PCB MILLING & CREATION

text by sessakukiban.com NON PERIODICAL WEB MAGAZINE FOR PCB CREATION

CADを使って作る簡単! 切削基板 第13回

KiCadを使用して製作する

Arduino Pro Miniの 基本性能を学習するための 実験基板

使用するもの

- ●切削加工基板(150mm x 100mm)
- ●パーツー覧にある電子部品
- Arduino Pro Mini (開発環境 はインターネットよりダウンロードする)
- ●A4988 ドライバ (Amazon.co.jp 販売)
- ●テスト用バイポーラ型モーター (A4988 ドライバの規格に準ずる)
- ●LCD キャラクタディスプレイモジュール(SC1602BS*B /秋月電子販売)
- ●USBシリアル変換ケーブル(AVE488 /秋月電子販売)
- ●SDカードスロットルモジュール(Micro SDカード対応 /5V入力対応)
- ●SDカード/SDカードリーダ・ライター(使用するSDカードはArduinoの規格に準ずる)

FEB 2023

- ●LM75Bセンサーモジュール
- ●電源 9V (基板用)
- テスト方法:本文参照。PCは Windows 7 を使用。

タイマー処理、LCDへの文字表示、 バイポーラ型ステッピングモータの駆動、 温度センサーモジュールやSDカードについて Arduino Pro Mini の基本性能を学習します。 本切削基板を発注の方には KiCad データが付属します。 そのデータを使用したオリジナル基板の制作も可能です。

※本稿使用 KiCad のヴァージョンは BZR4022 です。
※切削加工ならびにそれを使用して完成された基板は本誌撮影用に製作されたものです。
基板の仕様・内容は、検証を重ね、予告なく随時変更しますのであらかじめご了承ください。
※実験の開始前に必ず PC データのバックアップをとるようにしてください。
実験は自己責任により行うものとし、いかなる損害も切削基板屋ではその責任を負いません。

PCB MILLING & CREATION 10

図1■テスト時

| 🗵 2= 回路図

回の実験ではArduino Pro Miniの基本的な性能を学びます。Arduino Pro MiniはUnoと異なり、書き込み用のデバイスが必要になりますが、この切削基板は、書き込み機能もオールインワンで備えており、実験がとても容易となっております。基本的なコードを書き、各種性能に関するテストを行いました。LED点滅やボタン押下による割り込み、LCD表示、I²C通信による温度データ取得、SDカードへの保存、モータ・ドライバーA4988を利用したバイポーラ型ステッピングモータの駆動など、比較的汎用性の高い内容となっております。

今回使用するAtmega328 (5V 16MHz) 搭 載のArduino Pro MiniとUnoとでは、各端 子の機能がほぼ同一のため、Arduino Uno の参考書として定評のある『Arduinoをは じめよう』を基本書として推奨します。ま

図3■パターン図 (基板表面から見る)

パーツ名称	個数
コンデンサ 4.7 μ F	5
基板用押しボタンスイッチ タクトスイッチ	1
半固定ボリューム 3,362P 10K	2
Dサブコネクタ 9メス基板取付け用Lタイプ	7°1
抵抗 10K	1
抵抗 100K	1
温度センサモジュールLM75B	1
SDカードスロットルモジュール	1
IC MAX232	
DC JACK MJ-179PH	1
LCD SC1602BS*B	1
A4988 ドライバ	1
ピンソケット シングル2.54P 5PIN	1
ピンソケット シングル2.54P 6PIN	7
ピンソケット シングル2.54P 12PIN	2
ピンソケット シングル2.54P 8PIN	2
ピンソケット ダブル2.54P 4PIN	1
丸ピンICソケット 16PIN	1
ジャンパーピンセット (2.54 ミリピッチ)	3
Arduino Pro Mini 16MHz 5V	1

た、具体的なピンの配列につきましては、 各種ドキュメントがネットでも配布されて おりますので、検索の上参考資料として取 得してください。

●KiCadを使用し、回路図を作成後 [図
 2・3]、切削加工し、切削加工基板を作成
 します。回路図を作成するにあた
 り、A4988などの仕様を反映させます。

●パーツリストを参照の上、必要な部材を 装着し基板を完成させます [表1・図4]。最 後に Arduino Pro Mini、A4988、LCD、SD カードスロットルを装着します。A4988に つきましては今回購入した基板は裏面にシ ルク印刷がありましたのでGNDを切削基 板U1接続端子シルクGにむけて接続しま す。向きを間違えないように注意しま す。A4988は定電流制御でバイポーラ型ス テッピングモータを駆動しますが、A4988 の最大出力電流が2Aですのでそれに合わ せた仕様のモータでテストします。電流は モータの仕様にあわせA4988の基板上の可 変抵抗器を回して調整できます。販売メー カによって計算式が変わるようですので WEBなどで実際にテストされている方の レポートを読むなど確認が必要です。 続いてLCD接続をP1接続端子(基板縦位 置に見て上側)で行いますが、LCDのピン 位置(1:VCC)を確認した上、切削基板 シルク番号 1 にむけて接続します。SDカ ードスロットルは5V信号入力対応のモジ ュールを今回は使用しています。

続いてコードの開発を行います。Arduino開発環境が未インストールの場合は該当サイトにて、使用環境にあわせたArduino開発環境をインストールします。切削基板屋ではArduino開発環境1.6.9をWindows10で使用しております。

また温度センサーで取得したデータをグ

図5■プログラミングデータ書き込み時

ラフにするため、PC側のソフトの開発は Processing2.2.1を使用しています。こちら もイスントールしておきます。

●切削基板屋では以下のようなテストを行 いArduino Pro Miniの性能を確認しまし た。

まず、Arduino Pro Miniの書き込みを行い ます。Arduino Pro Miniにつきましては、 書き込みに際し、DTR信号のやりとりが 必要になります。廉価に販売されています USBシリアル変換ケーブルにはこの信号の やりとりがない場合もあるかもしれませ ん。秋月電子販売のVE488では動作が確認 とれております。また、Arduino Pro Mini 互換機などで書き込み端子のポート位置が 逆になっているものもおり、その場合は基 板の配線を変える必要性がございます。

◆テスト1

ポーリングで、スイッチ(SW1/以下括弧 内は切削基板に対応した名称を表します) を押したときにLED を点灯、離した時に 消灯させました。割り込みでスイッチ (SW1)を押したときにLEDを3秒点灯そ の後消灯させました。その他アセンブリで マイクロ秒以下の早い時間待ちについて検 証しました。

◆テスト2

A4988を使用してバイポーラ型ステッピン

┃ 図5■ テスト2 バイポーラ型モーター駆動

図6-テスト2 Arduino開発環境でのコーディング

図6■テスト4 温度センサーから取得した 温度データをLCDで表示

│ 図7■ テスト5 温度データをSDカードに保存し、パソコンでProcessingを使用してグラフ表示

◆テスト3

LCDの表示をテストします。基本的な動作 はライブラリーの活用で確認できま す。RV2の半固定抵抗よりAD変換値を取 得し、表示させます。

◆テスト4

温度センサーLM75Bから温度を取得して Arduinoのシリアルモニターで温度を表示 させます。LM75BからはI²C通信でデータ を取得します。あわせてパソコンとの通信 手段であるシリアル通信もテストします。

◆テスト5

I²C通信で温度センサーLM75Bから温度を

取得してLCDにを表示させます。LCDキ ャラクタディスプレイモジュールによる2 行表示をテストしました。

◆テスト6

I²C通信で温度センサーLM75Bから温度を 取得してSDカードにバイナリーデータと して保存します。温度データを2バイト で、Arduino起動してからの時間を4バイト で保存するデータ形式としました。センサ ー付近をドライヤーでやや温めてからの温 度低下を見ています。このデータをパソコ ン内にコピーしてProcessingで作成したソ フトでグラフを表示させました。

注意事項/免責事項

◎電子工作は適切な知識のもと、安全面に十分ご配慮して行なってください。
◎本 PDF マガジンの内容を利用する場合は、使用者の

◎本 FDF マガランの内容を利用する場合は、使用者の 自己責任において行うものとします。

その際、使用者にいかなる損害、被害が生じましても、 発行者、執筆者、PDF 制作関係者は一切の責任を負いま せん。あらかじめご了承ください。

KiCad の使用方法については PCB MILLING & CREATION 01 号~ 03 号を参照下さい。

01 号:回路図を手書きで直ぐパターン図作成

02号:回路図を KiCad で作成しリンクしてパターン図を作成 03号:ライブラリー作成方法